Integrated Wellbore Integrity Analysis Program for CO₂ Storage Applications

DE-FE0026585

Mark Moody Battelle, Columbus, Ohio, USA

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 16-18, 2016

Presentation Outline

- 1) Benefit to Program
- 2) Project Overview
- 3) Technical Status
- 4) Accomplishments to Date
- 5) Synergy Opportunities
- 6) Summary
- Appendix Material

Benefit to the Program

- This project addresses Funding Opportunity 1240 Area of Interest 2: Wellbore Leakage Identification and Characterization.
- The project is designed to establish an effective approach to determining the location/depth, nature, and severity of well integrity issues for wells exposed to CO₂ environments in the subsurface.
- Project results will provide new and improved predictive methods to survey, identify, characterize, and manage wellbore integrity defects for CO₂ storage applications.

Project Overview: Goals and Objectives

- The objective of this project is to develop and validate a program for identifying and characterizing wellbore leakage potential for CO₂ storage applications based on analytics of well records validated with sustained casing pressure field monitoring.
- The project will develop and advance technologies that will significantly improve the effectiveness and reduce the cost of implementing carbon storage.

Project Overview: Goals and Objectives

- Integration of casing pressure test results with automated machine based learning analytics can identify wells with poor integrity
- Development of an integrated program to identify, survey, measure, analyze, and remediate CO₂ migration in wellbores.
- In addition, the type of well defect (micro-annulus, cracks, cement voids, and incomplete cement coverage) may be better characterized to select to the most appropriate remediation technology.

Project Overview

3-Year Project; October 2015 - September 2018

Technical Status - Well Integrity Registry Task 2

- Literature and experience based research
- Identify wellbore integrity issues, and where and how they occur
- Five subtasks explored

Well Construction	Well Casing	Well Cement	Geologic Processes	CO2 Environments			
MethodsMaterials	Corrosion/wearLeaks	ContaminationDefects	GeomechanicalGeochemical	• Influence of CO2 of cement, casing, etc.			

Well Component	Integrity Issue	Description	Causes	When	Leakage Pathway
	Thermo- mechanical cycling	Contraction and expansion of well casing	Differences between properties of materials	Construction, operation, workover, abandonment	Debonding along cement interface (microannulus)
Casing	Wear	Wear to the casing	Casing interactions with wellbore and tools	After drilling, during workovers	Burst, collapse, holes in casing
	Corrosion	Corrosion of casing	Contact with corrosive fluids saturated with CO ₂	Construction, operation, workover, abandonment	Holes in casing, cracking
	Degradation	Dissolution or alteration of cement	Contact with corrosive fluids saturated with CO ₂	Construction, operation, workover, abandonment	Pores in cement or along degraded cement at interfaces
Cement	Microannulus and cracking	A small gap between casing and cement and cracks in the cement	Casing and cement debond, or bond was never established or was broken	Construction, operation, workover, abandonment	Along casing- cement interface
	Mud contamination	Poor mud removal before cementing	Poor cement job design, poor hole cleanout	During construction	Along interfaces or through bulk cement
	Eccentering	Casing is not centered in the borehole	Poor centralization	During construction	Along casing, cement, or mud interfaces
	Mud channels	Cement slurry fingers through the mud in the annulus	Poor cement job design	During construction	Along mud channel interface or through flowing mud
	Fluid invasion	Invasion of fluids into cement	Poor cement slurry design and loss of hydrostatic pressure	During construction	Poor zonal isolation
ole wall logic sses)	Formation lithology	Borehole breakout and drilling induced fractures	Induced stress greater than maximum of the formation stress	During drilling	Poor cement bond to borehole wall
Boreho (Geo Proce	Geomechan- ical stresses	Changes in stress field	Pressure gradient changes and creep	Construction, operation, workover, abandonment	Cement and casing damage or failure

Battelle The Business of Innovation

VELL SCENARIOS

Technical Status - Well Data Collection Task 3

- Goal is to collect readily available well records
- Built a database of well construction, operation, and workovers/leakage
- Databases will be used to develop models to predict wellbore integrity problems

Technical Status - Well Data Collection Task 3

Michigan Basin Site

- Over 1600 wells within the study area
- Antrim shale natural CO₂ producer
- Niagaran reef CO₂ enhanced oil recovery project

Technical Status – Well Data Collection Task 3

Weyburn CO₂ Storage Project

- Located in the northern rim of the Williston Basin, 16 km south east of Weyburn
- Approximately 650 production and injection wells in operation
- Vast, publicly accessible collection of historic records back to 1954
 - Approximately 600 cores and geophysical logs
- CO2 injection commenced in 2000

Geographic location of the Weyburn field taken from Wilson et al. (2004). The field is set in the Williston sedimentary basin, which stretches across much of the north of the USA and central Canada

Technical Status - Well Data Collection Task 3

Indian Creek Field, Kanawha County, WV

- Natural CO₂ producing field
- Approximately 40 producing wells "
- Producing formation is the Silurian-aged Tuscarora sandstone
- Gas analysis indicated 61% to 65% CO₂ content in the gas
- Industrial gas supplier purchases gas and upgrades CO₂ for sale to food and beverage industry

- Michigan Niagaran Reef EOR field
- Weyburn field
 - CO₂ EOR/Storage Project
 - 30 Wells with SCP
 - SCP data gathering kits
 - Pressure recorders
 - Choke nipples
 - Instructions for measuring head space
- Indian Creek, WV field
 - Communicating with operator to acquire SCP data

NOTES:

1. HYDROSTATIC TEST TO 750PSI, HOLD TIME 30 MIN

 ITEM #6 CAN BE REPLACED TO CHANGE ORIFICE DIMENSION: 1/8" ORIFICE P/N: SS-810-R-8PD-E-125 1/4" ORIFICE P/N: SS-810-R-8PD-E-250

			BOM TABLE						
ITEM NO.	PAR	rt number	DESCRIPTION	DESCRIPTION					
1	9	SS-63TS8	316 SS 60 SERIES 2-WAY BALL V/	316 SS 60 SERIES 2-WAY BALL VALVE 1/2"					
2	PGI-63C	-PG1000-LAQX	316 SS C SERIES PRESSURE GAUGE 0-10	000 PSIG 1/4" TA	1	- (II			
3	SS-	-810-3-8-4	316 SS REDUCING TEE 1/2" X 1/	316 \$\$ REDUCING TEE 1/2" X 1/2" X 1/4"					
4	SS	S-811-PC	316 SS PORT CONNECTOR	2	7				
5	SS	-8-TA-1-8	316 SS ADAPT 1/2" TA X 1/2"	1	7				
6	SS-810)-R-8PD-E-063	316 SS REDUCER 1/2" X 1/2" TA WITH 0.04	1	7				
SIGNATURE REQUIRED:									
CONCEPT	DRAWING	- DRA WING NOT TO S CALE.	INS PRIVED IN EXCLUSIVE PROPERTY OF SWACE (OK COMPANY, I MUST BE RELEADED ON REQUES) A (ONE, WIN ANY DOCUMENTS CONTAINING, IMPORTATION OD IAINED FROM THE REVIEW, NEITHER IN A PRIVED AND REVEAL OF A DATA THE NEW CONCEPTION OF A DATA THE APPRILED OF THE DATA THE REVIEW OF A DATA THE	SF 7-14-2016	"" VAL	VE MANIFOLD ASSEMBLY			
SCIOTO VALVEA	GELOK.	- DRA WING & SUBJECT TO CHANGE WITHOUT NOTICE	O INTES OF IDED TOTA AT PUPPOSE EXCEPTION HUMETANCE OF YOUR BUSINESS WITH SWAC ETOX. THE PARTS REFERTED TO ON THIS FRUTHARY BE INESULICET OF PATENTS AND/OF PERDING APPEDATIONS A DOMAY HOT BE MANUNCEDITED WITHOUT PERMISSION FROM SWACE ETOX COMPANY.	AM 80410 D	PARI NO.	\$3652-ASSEM-47			

Note: Drawing is of a tube assembly. Same can be replicated in pipe.

Data Collected At Each Well

<u>Site:</u>

- 1. GPS coord. & timestamped
- photo of well connection
- 2. Initial pressure
- 3. Orifice size
- 4. Time and delta P of depressurization
- 5. Record of pressure build-up

Piping Manifold Cost: \$220 (includes parts and assembly)

Monitoring Depressurization

Inputs		t_vent	0.5	min		Required	P.Drop	25%								
Gas	Methane		30	sec												
Gamma	1.32															
R, gas constan	t 518.3 Jł(kgK)	Pi (psig)	30	50	95	150	200	250	300	350	400	450	500	550	600	Note: Pressure output in psig
Capital Gamma	a 0.77	V (m3)														
		0.001	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0.005	0	0	0	0	0	0	0	0	0	0	0	0	0	KEY
		0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0.05	0	0	0	0	0	0	0	0	0	0	0	0	0	LESS THAN OPTIMAL
To	150 degF	0.1	0	0	0	0	0	0	2	5	7	10	13	15	18	_
	339 K	0.2	0	0	8	19	29	39	49	59	69	79	89	100	110	OPTIMAL
Dia_orifice	14 in	0.3	0	7	22	40	57	74	90	107	124	140	157	174	190	
Area_orifice	0.05 in2	0.4	5	13	33	57	78	100	122	143	165	186	208	230	251	NOT VALID
	3.16692E-05 m2	0.5	8	18	41	69	94	120	145	171	196	222	247	272	298	
		0.6	11	22	47	79	107	135	164	192	220	249	277	305	334	
		0.7	13	25	53	86	117	148	178	209	240	270	301	332	362	
0	0::	0.8	14	27	57	93	125	158	190	223	255	288	320	353	385	
Oritice	e Sizing	0.9	16	29	60	98	132	166	200	234	268	302	336	370	405	
• •		1	17	31	63	102	137	173	208	244	279	314	350	385	421	
Calcu	lator	1.5	21	37	72	116	156	195	235	275	314	354	394	433	473	
		2	23	40	- 77	124	166	208	250	292	334	376	418	460	502	
tor Des	sign	5	27	46	88	139	185	232	279	325	372	418	465	512	558	
		10	28	48	91	144	193	241	289	337	386	434	482	530	579	
Optimi	zation	16	29	49	93	146	195	244	293	342	391	440	489	538	587	
-		50	30	50	94	149	198	248	298	347	397	447	496	546	596	
			L					γ]	
							_					_			_	

Vessel Pressure After 30 seconds of Venting

for First 10 Minutes

Occasional Pressure Logging Thereafter

Madgetech image from: http://www.madgetech.com/data-loggers/product-applications/compressor-and-pump-monitoring/prtemp1000.html

Accomplishments to Date Task 2: Well Integrity Registry

- Construction Methods
- Casing Integrity Issues
 - Wear, Corrosion
- Cement Issues
 - Primary, Remedial and Plugging
- Geological Processes
- CO₂ Environments

Synergy Opportunities

Synergy to DOE-NETL Carbon Storage Program

- Project has significant synergies with other ongoing work on carbon storage technologies (carbon capture & storage), shale gas developments, other CO₂ storage research.
- Provides a better understanding of wellbore integrity, a key issue for CO₂ storage in the region's deep rock formations.
- Reduces uncertainty related to existing/future power plant locations by.

Summary- Future Work

Task 3: Well Record Data Collection and ReviewIn progress

- Task 4: Log and Testing Based on Well Integrity Assessment
- Task 5: Sustained casing Pressure AnalysisIn progress
- Task 6: Well Integrity Analysis with Machine Based Learning
- Task 7: Wellbore Integrity Factor Uncertainty Analysis
- Task 8: Reporting and Technical transfer

Future Work – Task 6

Big Data

- Typically characterized as the "3 Vs"
 - Volume (large amounts of data)
 - Variety (many different sources of data)
 - Velocity (real-time streaming data)
- Analytics with Machine Learning
 - Transform raw data into information for decision-making
 - Includes all of the infrastructure required to do that transformation:
 - Data collection & management
 - Predictive modeling

- Exploratory data analysis
- Visualization & reporting

Future Work – Task 6

- A few examples:
 - Identify groups of wells for which construction is similar, and better understand the variables that differentiate between those groups
 - Determine whether technique A is better than technique B based on historical data
 - Given operational and geological data, rank several candidate locations based on predicted performance
 - Analyze sensor and image logs to flag formations of interest, going beyond simple threshold and rule-based calculations

Acknowledgements

- The project was funded by the U.S. DOE / National Energy Technology Laboratory under their program on technologies to ensure permanent geologic carbon storage (Contract DE-FE0026585).
 Project Manager – William O'Dowd, NETL Sequestration Division.
- Project team includes Battelle (Lead), Core Energy and the West Virginia Geologic and Economic Survey (WVGES).
- Petroleum Technology Resource Center (PTRC): SCP and well construction data from Weyburn field

U.S. DOE/NETL

CORE ENERGY, LLC

The End. Thank You!

Mark Moody moodym@battelle.org

Battelle The Business of Innovation

800.201.201 | solutions@battelle.org | www.battelle.org

Additional Project Information

Project Organization Chart

Gantt Chart

 Project is designed with a sequential series of tasks over 3 years.

	BP1			BP2				BP3				
Task Name		FY2016				FY2	017		FY2018			
lask Name	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1: Project Management & Planning												•
1.1 Update Project Mgmt. Plan	•											
1.2 Project Management												
1.3 Progress Reporting					-							
1.4 Project Controls					-							
1.5 NEPA Reporting												
Task 2: Well Integrity Registry				9								
2.1 Well Construction Methods												
2.2 Well Casing Integrity Issues												
2.3 Well Cement Issues												
2.4 Geologic Processes												
2.5 CO2 Environments												
Task 3: Well Record Data Collection & Rev.							9					
3.1 Cement & Drilling Records												
3.2 Operational Records												
3.3 Well Workover/Leakage Records							•					
Task 4: Log & Testing Based Well Int. Asmt.								9				
4.1 Log Analysis												
4.2 Well Record Analysis												
4.3 Well Integrity Evaluation												
Task 5: Sustained Casing PressureAnalysis		6								•		
5.1 SCP Field Site Description												
5.2 SCP Field Data Collection										•		
5.2 SCP Data Analysis												
Task 6: Well Integrity w/Machine Learning											ſ	
6.1 Well Int. Regression of Well Int. Indicators												
6.2 Data Analysis Algorithm Dev.w/Mach. Lrng												
6.3 Meta-Modeling on Test Fields												
Task 7: WBI Uncertainty Factor Analysis											ſ	
7.1 WBI Identification												
7.3 Uncertainty Reduction												
Task 8: Reporting and Tech Transfer	-											•
9.1 Progress Reports	•	•	•	•	•	•	٠	•	•	•	•	•
9.2 Technical Reports				٠		٠		•			•	•
9.3 Final Reporting	l											
9.4 Project Meetings												
9.4 DOE BPM	•	•	٠	•	•	•	٠	•	•	•	•	٠

Deliverables/Milestones

Milestones

Budget Period	Milestone Description	Planned Due Date	Verification Method
1	Update Project Management Plan	30 days after initial award	Project Management Plan
1	Complete Wellbore Integrity Registry	June 2016	Well Integrity Registry Summary Report
2	Collect Well Record Data	June 2017	Well Record Data
2	Complete Log & Testing Based Well Integrity Assessment	September 2017	Log & Testing Based Well Integrity Assessment Summary Report
3	Collect All Sustained Casing Pressure Analysis Data	March 2018	Complied database of Sustained Casing Pressure Analysis Data
3	Complete Well Integrity Analysis Machine Based Learning	June 2018	Well Integrity Analysis Machine Based Learning Summary Report

Bibliography

IEA GHG Weyburn CO2 Monitoring & Storage Project, IEA Greenhouse Gas R&D Programme, Orchard Business Center, Stoke Orchard, Cheltenham, Glos. GL52 7RZ, UK.

J Hamak and S Sigler. **Analysis of Natural Gasses, 1986-1990.** U.S. Bureau of Mines Information Circular, IC 9301.

J Schuetter, S Mishra, M. Zhong, R. LaFollette. **Data Analytics for Production Optimization in Unconventional Reservoirs (URTeC 2167005)** Unconventional Resources Technology Conference, San Antonio, TX, July 2015.

J Schuetter, S Mishra, and D Mooney. **Evaluation of metamodeling techniques on a CO2 injection simulation study.** Proc., 7th International Congress on Environmental Modelling and Software, San Diego, California, USA, DP Ames, N. Quinn (Eds.), June 2014.

J Schuetter, S Mishra, P Ravi Ganesh, and D Mooney. **Building Statistical Proxy Models for CO₂ Geologic Sequestration.** *Energy Procedia* 63 (2014): 3702-3714.

M Zhong, J Schuetter, S Mishra, R LaFollette. **Do Data Mining Methods Matter? A Wolfcamp Shale Case Study (SPE 173334)** SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, February 2015.

